
Week 1 - Wednesday



 What did we talk about last time?
 Course overview
 Policies
 Schedule
 Taste of data structures









 The book talks about stuff that you know pretty well as Java 
programmers

 I just want to talk about a few issues
 Primitive types
 Shortcut notations
 Short circuit logic
 break and continue
 Libraries
 Strings



 Java has relatively strong typing
 Understand why you're making a cast, and try not to make casts for 

no reason
 Remember that all the primitive numerical types in Java are 

signed
 Strange things can happen

byte x = -128;
x *= -1;
System.out.println(x); // Output?



 Java has various shortcuts that are almost the same as combinations of 
other operators: +=, -=, *=, /=, %=, ++, -- (and a few others)

 And know what you're doing with ++ (it means add one to the variable 
and store that value back into the variable):

int i = 0;
while (i < 10)
i += 0.1; // Legal but crazy

int i = 0;
i = i++; // Legal but crazy
i = ++i; // Legal, crazy, different result



 Short-circuit logic means:
 true || expressionwon't even evaluate expression
 false && expressionwon't even evaluate expression

 You can force evaluation with non-short-circuit operators |
and &:

if (alwaysTrue() || explode())
whatever(); // explode() didn't run

if (alwaysTrue() | explode())
whatever(); // explode() did run



 I don't like break and continue inside of loops
 There is usually a more readable, more elegant way to write the code
 But you should know that Java has a seldom-used labeled break feature 

that allows you to break out of multiple loops
 Say you're searching through a multi-dimensional array for a value:

search: for (i = 0; i < arrayOfInts.length; i++) { for (j = 0; j < arrayOfInts[i].length; j++) { if (arrayOfInts[i][j] == searchfor) { foundIt = true; break search; } } }

search:
for (i = 0; i < arrayOfInts.length; i++) {

for (j = 0; j < arrayOfInts[i].length; j++) {
if (arrayOfInts[i][j] == searchfor) {

foundIt = true;
break search;

}
}

}

Example from: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html



 One thing worth mentioning is that you get java.lang.* "for 
free," without importing anything:
 String
 Math
 Object
 Thread
 System
 Wrapper classes (Integer, Double, etc.)

 Any other classes outside of the current package must be 
imported to be used



 The String type is immutable in Java
 You can never change a String, but you can create a new String
 The second line creates a new String:

 This approach can be very inefficient:

 When a lot of concatenation is expected, use StringBuilder

String stuff = "Break it down ";
stuff += "until the break of dawn";

String values = "";
for (int i = 0; i < 1000000; ++i)
values += i;





 Technically, Java doesn't have pointers
 Instead, every object in Java is referred to with a reference
 A reference is just an arrow that points at an object
 A reference can point at nothing (null)
 A primitive type can never be null



 Picture a ham…
 Imagine that this ham is actually a Java object
 You may want a reference of type Ham to point at this ham 
 Let's call it ham1

ham1



 Now, what if we have another Ham
reference called ham2

 What happens if we set ham2 to have 
the same value as ham1 using the 
following code?

ham1
Ham ham2 = ham1;

ham2



 When you assign an object reference to another reference, 
you only change the thing it points to

 This is different from primitive types
 When you do an assignment with primitive types, you actually 

get a copy

int x = 37;
int y = x;

y
37

x
37



 Since reference variables are only pointers to real objects, an 
object can have more than one name

 These names are called aliases
 If the object is changed, it doesn’t matter which reference was 

used to change it



 Thus, if we tell ham2 to take a bite away, 
it will affect the ham pointed at by ham1

 Remember, they are the same ham

ham1
ham2.bite();

ham2



 We have int values x and y, both with value 37
 If we change x, it only affects x
 If we change y, it only affects y

int x = 37;
int y = x;
++x;
--y;

y
37

x
3738 36



 Sometimes you want to make a full copy of an object
 Every object has a clone()method that allows you to do this
 clone() is intended to make a deep copy instead of a shallow copy
 Ideally, all the objects inside of the object are cloned as well
 There is no way to guarantee that clone() gives deep copies for 

arbitrary objects
 clone()works well for Java API objects
 You have to write your own if you want your objects to work right
 Doing so can be tricky





 There are three ways that static can be used in Java
 Static methods
 Static members
 Static inner classes

 "Staticness" is a confusing concept, but it boils down to 
missing a connection to a particular object



 A static method is connected to a class, not an object
 Thus, static methods cannot directly access non-static 

members
 You also can't use this inside them

 Static methods can indirectly access members since they have 
the privileges to access private and protected data
 You just have to pass them an object of the class they're in

 Static methods are slightly more efficient since they do not 
have dynamic dispatch
 Thus, they cannot be overridden, only hidden



public class X {
private int x;
public static void print() {

System.out.println("X");
// x = 5;
// previous line would not compile
// if uncommented

}
}

public class Y extends X {
public static void print() {

System.out.println("Y");
}

}



X x = new X();
Y y = new Y();
X z;

x.print(); // prints X
y.print(); // prints Y

z = x;
z.print(); // prints X
z = y;
z.print(); // prints X



 A static member is stored with the class, not with the object
 There is only ever one copy of a static member
 Static members are a kind of global variable
 They should be used very rarely, for example, as a way to implement 

the singleton design pattern
 Static members can be accessed by static methods and 

regular methods



public class Balloon {
private String color;
private int size;
private static int totalBalloons = 0;

public Balloon(String color, int size) {
this.color = color;
this.size = size;

++totalBalloons;
}

public String getColor() {
return color;

}

public static int getBalloons() {
return totalBalloons;

}
}





 The simplest kind of inner class is a static inner class
 It's a class defined inside of another class purely for 

organizational purposes
 It cannot directly access the member variables or non-static 

methods of a particular outer class object



 In this example, the Node class is used like a struct from C or 
C++ to hold values

public class LinkedList {
private Node head;

private static class Node {
public int value;
public Node next; 

}
}



 A non-static inner class is 
connected to a specific outer 
class object

 It can directly access the 
members and non-static 
methods of the outer object

Outer

Inner

Inner

Inner

Inner

Inner



public class LinkedList {
private Node head;
private int size;

private class Node {
public int value;
public Node next; 

public Node() {
if (size > 100)

System.out.println("Your list is long!");
}

}
}



 If a static inner class is public, you can create it directly

 However, a non-static inner class requires an instance of the outer 
class to be created (with weird syntax)

 Inside the outer class, it is not necessary to give a reference to the 
outer class, since this is assumed

Outer.StaticInner inner; 
inner = new Outer.StaticInner();

Outer outer = new Outer();
Outer.Inner inner = outer.new Inner();



 Most of the time, a static inner class is fine
 It isn't attached to a specific outer object
 Most languages only have the equivalent of static inner classes

 However, if you want an inner class to automatically have access 
to a specific outer object, you might need a non-static inner class
 For example, if a node needs to know the total number of nodes in a linked 

list
 Iterators are another common example
 Beware of bugs: a node created in one linked list can be moved to another 

linked list but will still be connected to the first one
 Use static inner classes unless there's a compelling reason not to





 Exceptions
 OOP
 Interfaces
 Generics
 Java Collection Framework



 Come to lab tomorrow to keep working on Assignment 1 and 
start on Project 1

 Continue to read section 1.1
 Keeping brushing up on Java if you're rusty
 Decide your teammates on Brightspace for Project 1 by this 

Friday!
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