
Week 1 - Wednesday

 What did we talk about last time?
 Course overview
 Policies
 Schedule
 Taste of data structures

 The book talks about stuff that you know pretty well as Java
programmers

 I just want to talk about a few issues
 Primitive types
 Shortcut notations
 Short circuit logic
 break and continue
 Libraries
 Strings

 Java has relatively strong typing
 Understand why you're making a cast, and try not to make casts for

no reason
 Remember that all the primitive numerical types in Java are

signed
 Strange things can happen

byte x = -128;
x *= -1;
System.out.println(x); // Output?

 Java has various shortcuts that are almost the same as combinations of
other operators: +=, -=, *=, /=, %=, ++, -- (and a few others)

 And know what you're doing with ++ (it means add one to the variable
and store that value back into the variable):

int i = 0;
while (i < 10)
i += 0.1; // Legal but crazy

int i = 0;
i = i++; // Legal but crazy
i = ++i; // Legal, crazy, different result

 Short-circuit logic means:
 true || expressionwon't even evaluate expression
 false && expressionwon't even evaluate expression

 You can force evaluation with non-short-circuit operators |
and &:

if (alwaysTrue() || explode())
whatever(); // explode() didn't run

if (alwaysTrue() | explode())
whatever(); // explode() did run

 I don't like break and continue inside of loops
 There is usually a more readable, more elegant way to write the code
 But you should know that Java has a seldom-used labeled break feature

that allows you to break out of multiple loops
 Say you're searching through a multi-dimensional array for a value:

search: for (i = 0; i < arrayOfInts.length; i++) { for (j = 0; j < arrayOfInts[i].length; j++) { if (arrayOfInts[i][j] == searchfor) { foundIt = true; break search; } } }

search:
for (i = 0; i < arrayOfInts.length; i++) {

for (j = 0; j < arrayOfInts[i].length; j++) {
if (arrayOfInts[i][j] == searchfor) {

foundIt = true;
break search;

}
}

}

Example from: https://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html

 One thing worth mentioning is that you get java.lang.* "for
free," without importing anything:
 String
 Math
 Object
 Thread
 System
 Wrapper classes (Integer, Double, etc.)

 Any other classes outside of the current package must be
imported to be used

 The String type is immutable in Java
 You can never change a String, but you can create a new String
 The second line creates a new String:

 This approach can be very inefficient:

 When a lot of concatenation is expected, use StringBuilder

String stuff = "Break it down ";
stuff += "until the break of dawn";

String values = "";
for (int i = 0; i < 1000000; ++i)
values += i;

 Technically, Java doesn't have pointers
 Instead, every object in Java is referred to with a reference
 A reference is just an arrow that points at an object
 A reference can point at nothing (null)
 A primitive type can never be null

 Picture a ham…
 Imagine that this ham is actually a Java object
 You may want a reference of type Ham to point at this ham
 Let's call it ham1

ham1

 Now, what if we have another Ham
reference called ham2

 What happens if we set ham2 to have
the same value as ham1 using the
following code?

ham1
Ham ham2 = ham1;

ham2

 When you assign an object reference to another reference,
you only change the thing it points to

 This is different from primitive types
 When you do an assignment with primitive types, you actually

get a copy

int x = 37;
int y = x;

y
37

x
37

 Since reference variables are only pointers to real objects, an
object can have more than one name

 These names are called aliases
 If the object is changed, it doesn’t matter which reference was

used to change it

 Thus, if we tell ham2 to take a bite away,
it will affect the ham pointed at by ham1

 Remember, they are the same ham

ham1
ham2.bite();

ham2

 We have int values x and y, both with value 37
 If we change x, it only affects x
 If we change y, it only affects y

int x = 37;
int y = x;
++x;
--y;

y
37

x
3738 36

 Sometimes you want to make a full copy of an object
 Every object has a clone()method that allows you to do this
 clone() is intended to make a deep copy instead of a shallow copy
 Ideally, all the objects inside of the object are cloned as well
 There is no way to guarantee that clone() gives deep copies for

arbitrary objects
 clone()works well for Java API objects
 You have to write your own if you want your objects to work right
 Doing so can be tricky

 There are three ways that static can be used in Java
 Static methods
 Static members
 Static inner classes

 "Staticness" is a confusing concept, but it boils down to
missing a connection to a particular object

 A static method is connected to a class, not an object
 Thus, static methods cannot directly access non-static

members
 You also can't use this inside them

 Static methods can indirectly access members since they have
the privileges to access private and protected data
 You just have to pass them an object of the class they're in

 Static methods are slightly more efficient since they do not
have dynamic dispatch
 Thus, they cannot be overridden, only hidden

public class X {
private int x;
public static void print() {

System.out.println("X");
// x = 5;
// previous line would not compile
// if uncommented

}
}

public class Y extends X {
public static void print() {

System.out.println("Y");
}

}

X x = new X();
Y y = new Y();
X z;

x.print(); // prints X
y.print(); // prints Y

z = x;
z.print(); // prints X
z = y;
z.print(); // prints X

 A static member is stored with the class, not with the object
 There is only ever one copy of a static member
 Static members are a kind of global variable
 They should be used very rarely, for example, as a way to implement

the singleton design pattern
 Static members can be accessed by static methods and

regular methods

public class Balloon {
private String color;
private int size;
private static int totalBalloons = 0;

public Balloon(String color, int size) {
this.color = color;
this.size = size;

++totalBalloons;
}

public String getColor() {
return color;

}

public static int getBalloons() {
return totalBalloons;

}
}

 The simplest kind of inner class is a static inner class
 It's a class defined inside of another class purely for

organizational purposes
 It cannot directly access the member variables or non-static

methods of a particular outer class object

 In this example, the Node class is used like a struct from C or
C++ to hold values

public class LinkedList {
private Node head;

private static class Node {
public int value;
public Node next;

}
}

 A non-static inner class is
connected to a specific outer
class object

 It can directly access the
members and non-static
methods of the outer object

Outer

Inner

Inner

Inner

Inner

Inner

public class LinkedList {
private Node head;
private int size;

private class Node {
public int value;
public Node next;

public Node() {
if (size > 100)

System.out.println("Your list is long!");
}

}
}

 If a static inner class is public, you can create it directly

 However, a non-static inner class requires an instance of the outer
class to be created (with weird syntax)

 Inside the outer class, it is not necessary to give a reference to the
outer class, since this is assumed

Outer.StaticInner inner;
inner = new Outer.StaticInner();

Outer outer = new Outer();
Outer.Inner inner = outer.new Inner();

 Most of the time, a static inner class is fine
 It isn't attached to a specific outer object
 Most languages only have the equivalent of static inner classes

 However, if you want an inner class to automatically have access
to a specific outer object, you might need a non-static inner class
 For example, if a node needs to know the total number of nodes in a linked

list
 Iterators are another common example
 Beware of bugs: a node created in one linked list can be moved to another

linked list but will still be connected to the first one
 Use static inner classes unless there's a compelling reason not to

 Exceptions
 OOP
 Interfaces
 Generics
 Java Collection Framework

 Come to lab tomorrow to keep working on Assignment 1 and
start on Project 1

 Continue to read section 1.1
 Keeping brushing up on Java if you're rusty
 Decide your teammates on Brightspace for Project 1 by this

Friday!

	COMP 2100
	Last time
	Questions?
	Assignment 1
	Programming Model
	Programming model
	Primitive types
	Shortcut notations
	Short-circuit logic
	break and continue
	Libraries
	Strings
	References
	Pointers in Java
	How should you think about this?
	How many hams?
	There is only one ham!
	Reference vs. primitive variables
	Ham solo
	Remember that primitives make copies
	The clone() method
	Static
	What is static?
	Static methods
	Static methods
	Static methods
	Static members
	Static members
	Inner Classes
	Static inner classes
	Static inner class example
	Inner classes
	Inner class example
	Creating inner classes
	When to use which
	Upcoming
	Next time…
	Reminders

